
LA-UR-20-23416
Approved for public release; distribution is unlimited.

Title: Basic OpenMP and Profiling

Author(s): Li, Ying Wai

Intended for: Web

Issued: 2020-05-06

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

in Slide, you

logo/management

use one of the two

Los Alamos National Laboratory

Basic OpenMP and Profiling
4/29/2020

Agenda

Instructor: Ying-Wai Li yingwaili@lanl.gov
(CCS-7 and Institutional Computing Applications Team)

10:00 – 10:45 am Lecture 1: Introduction to OpenMP

10:45 – 11:00 am Q&A; break

11:00 – 11:45 am Lecture 2: Profiling OpenMP applications with Vtune
11:45 am – 12:00pm Q&A

http://lanl.gov

Los Alamos National Laboratory

4/29/20 | 2

Lecture 1
Introduction to OpenMP

Los Alamos National Laboratory

4/29/20 | 3

Parallel Computing Basics

• Processing Element: the part of the computer that computes. This can
be a CPU or a component of a parallel processor such as a GPU.

• Node: a group of processing elements working together to do tasks.
• Parallel computing: the simultaneous execution of the same task, split

up and specially adapted, on multiple processing elements in order to
obtain faster results. The speed comes from doing more tasks at once.

• Network: the connection between nodes that allows communication
between those nodes.

• Communication: communication between processing elements is
required for most parallel programs.

• Scaling: how efficiently a program’s ability to do tasks increases with
increasing numbers of processing elements.

Los Alamos National Laboratory

4/29/20 | 4

What is OpenMP?

• A standard / library / application programming interface (API) for parallel
programming

• Parallelism on single node or multicore CPU on a laptop
• Fork-join model

master thread

threads

1
1

2

4

3

2

3

● ● ● ●

parallel region parallel region

Los Alamos National Laboratory

4/29/20 | 5

What is OpenMP?
• Shared-memory programming model:

– Data in parallel regions is shared by default
– All threads can access the shared data simultaneously

• Data scoping
– Global variables in the heap (e.g. DRAM) are shared
– Local variables in the stack (e.g. cache) are private

• Hybrid MPI-OpenMP parallelism:

…

interconnection network

CPU
Memory

CPU
CPU

Memory
CPU

CPU
Memory

CPU

MPI

OpenMP

CPU
DRAM

CPU
cache

Los Alamos National Laboratory

4/29/20 | 6

A “Hello World!” serial C++ program

#include <cstdio>

int main ()
{
printf("Hello world !”);

return 0;
} First step to parallel programming:

Start from the serial code as long as
it is possible

Los Alamos National Laboratory

4/29/20 | 8

A “Hello World!” OpenMP program

#include <cstdio>

int main ()
{

return 0;
}

Include OpenMP header
file that contains the

library’s API
#include <omp.h>

#pragma omp parallel
{
int thread_id = omp_get_thread_num();
int total_threads = omp_get_num_threads();

}

Get the identifier of
each thread

printf("Hello from thread %d of %d\n",
thread_id, total_threads);

Get the total number of
threads

Los Alamos National Laboratory

4/29/20 | 9

Compiling the “Hello World!” OpenMP program

> export OMP_NUM_THREADS=3
> g++ -fopenmp -o OpenMPHelloWorld OpenMPHelloWorld.cpp
> ./OpenMPHelloWorld
hello from thread 1 of 3 !
hello from thread 0 of 3 !
hello from thread 2 of 3 !

• Compile the program with: g++ -fopenmp
(f77 or f90 for Fortran)

• Different compilers have different flags to activate OpenMP:
• GNU: g++/gfortran -fopenmp
• Intel: icpc/ifort -qopenmp
• PGI: pgCC/pgf90 -mp

Question:
What do you observe from the order of print-outs from different threads?

Los Alamos National Laboratory

4/29/20 | 10

OpenMP API overview

The “Hello World” example shows the 3 fundamental OpenMP components
(in order of precedence):

• Compiler directives
#pragma omp (C++), !$OMP (Fortran)

• Runtime library routines
e.g. omp_get_thread_num(), omp_get_num_threads()

• Environment variables
e.g. OMP_NUM_THREADS

Los Alamos National Laboratory

4/29/20 | 11

Exercise 1
#include <cstdio>
#include <omp.h>

int main ()
{
printf("Number of processors: %d \n", omp_get_num_procs());

omp_set_num_threads(omp_get_num_procs());
printf("Number of threads: %d \n", omp_get_num_threads());

#pragma omp parallel
{
int thread_id = omp_get_thread_num();
int total_threads = omp_get_num_threads();
printf("Hello from thread %d of %d\n", thread_id, total_threads);

}

return 0;
}

What will you see in the output?

Los Alamos National Laboratory

4/29/20 | 12

Parallelizing a for loop: the for directive

#include <cstdio>

int main ()
{
int array_size = 100, sum = 0;
int A[array_size], B[array_size], C[array_size];

// Initialize A and B, add A and B and put the result in C
for (int i=0; i<array_size; ++i) {
A[i] = i;
B[i] = i*2;
C[i] = A[i] + B[i];

}

return 0;
}

How to parallelize the following vector-vector addition example?

2_vector_addition_3arrays.cpp

Los Alamos National Laboratory

4/29/20 | 13

Parallelizing a for loop: the for directive

#include <cstdio>
#include <omp.h>

int main ()
{
int array_size = 100, sum = 0;
int A[array_size], B[array_size], C[array_size];

// Initialize A and B, add A and B and put the result in C
#pragma omp parallel for
for (int i=0; i<array_size; ++i) {
A[i] = i;
B[i] = i*2;
C[i] = A[i] + B[i];

}

return 0;
}

How to parallelize the following vector-vector addition example?

Global variables are
shared and visible by
all threads

2_vector_addition_3arrays_parallel2.cpp

Los Alamos National Laboratory

4/29/20 | 14

Parallelizing a for loop: the for directive

#include <cstdio>

int main ()
{
int array_size = 100, sum = 0;
int A[array_size], B[array_size];

// Initialize A and B, add A and B and accumulate the results in sum
for (int i=0; i<array_size; ++i) {
A[i] = i;
B[i] = i*2;
sum += A[i] + B[i];

}

printf("The sum of the array is %d\n", sum);

return 0;
}

How about this? How to parallelize it?

2_vector_addition.cpp

Los Alamos National Laboratory

4/29/20 | 15

Parallelizing a for loop: the for directive

#include <cstdio>
#include <omp.h>

int main ()
{
int array_size = 100, sum = 0;
int A[array_size], B[array_size];

#pragma omp parallel for
for (int i=0; i<array_size; ++i) {
A[i] = i;
B[i] = i*2;
sum += A[i] + B[i];

}
printf("The sum of the array is %d\n", sum);
return 0;

}

Does it work? Why not? How to fix this?

2_vector_addition_parallel_buggy.cpp

Race condition! sum is a global
variable shared among all threads.

Los Alamos National Laboratory

4/29/20 | 16

Solution 1: The critical directive

#include <cstdio>
#include <omp.h>

int main ()
{
int array_size = 100, sum = 0;
int A[array_size], B[array_size];

#pragma omp parallel for
for (int i=0; i<array_size; ++i) {
A[i] = i;
B[i] = i*2;

#pragma omp critical
sum += A[i] + B[i];

}

printf("The sum of the array is %d\n", sum);
return 0;

}

2_vector_addition_parallel_solution1.cpp

• critical specifies that the region of code must be executed by
only one thread at a time

Eliminate race condition, but serialize the
computation that leads to poor performance

Los Alamos National Laboratory

4/29/20 | 17

Solution 2: A better use of critical directive
#include <cstdio>
#include <omp.h>

int main ()
{
int array_size = 100, sum = 0;
int A[array_size], B[array_size];

#pragma omp parallel
{
int sum_local = 0;
#pragma omp for
for (int i=0; i<array_size; ++i) {
A[i] = i; B[i] = i*2;
sum_local += A[i] + B[i];

}
#pragma omp critical
sum += sum_local;

}
printf("The sum of the array is %d\n", sum);
return 0;

}

2_vector_addition_parallel_solution2.cpp

Each thread has its own copy of sum_local

The mutually exclusive operations are
brought outside the for loop

Los Alamos National Laboratory

4/29/20 | 18

Solution 2.5: The atomic directive
#include <cstdio>
#include <omp.h>

int main ()
{
int array_size = 100, sum = 0;
int A[array_size], B[array_size];

#pragma omp parallel
{
int sum_local = 0;
#pragma omp for
for (int i=0; i<array_size; ++i) {
A[i] = i; B[i] = i*2;
sum_local += A[i] + B[i];

}
#pragma omp atomic
sum += sum_local;

}
printf("The sum of the array is %d\n", sum);
return 0;

}

2_vector_addition_parallel_solution2.cpp

Los Alamos National Laboratory

4/29/20 | 19

Solution 3: The reduction directive

#include <cstdio>
#include <omp.h>

int main ()
{
int array_size = 100, sum = 0;
int A[array_size], B[array_size];

#pragma omp parallel for reduction(+:sum)
for (int i=0; i<array_size; ++i) {
A[i] = i;
B[i] = i*2;
sum += A[i] + B[i];

}
printf("The sum of the array is %d\n", sum);
return 0;

}

2_vector_addition_parallel_solution3.cpp

• A private copy for the specified variable is created and initialized for each thread
• At the end of the loop, the reduction operation is carried out and the result is

written to the global shared variable

Los Alamos National Laboratory

4/29/20 | 20

Data scoping
• By default, all variables defined outside the parallel region are shared
• You can change it by:

1. The default clause
C++: #pragma omp parallel default(shared/none)
Fortran:!$omp parallel default(private/firstprivate/shared/none)

2. The shared clause to share a variable among threads
#pragma omp parallel shared(A,B)

3. The private clause to make a local copy for a variable in each thread
#pragma omp parallel private(sum)
Note: private does not initialize the variable

4. Use the firstprivate clause instead initialize a local variable
C = 1.0;
#pragma omp parallel firstprivate(sum)

Los Alamos National Laboratory

4/29/20 | 21

Other useful OpenMP functions and concepts
• Thread placement
o How an OpenMP thread is mapped onto hardware core
#pragma omp for schedule(static/dynamic/runtime/auto)

• Synchronization
o Ensuring all the threads arrive at the same point before moving on
#pragma omp barrier

o The opposite:
#pragma omp [for/single/…] nowait
(Note: by default, there is a barrier at the end of a parallel region/construct)

• Loop flattening (for nested for loops)
#pragma omp for collapse(level)

• Sections and Tasks (the sections or task constructs)
• Offloading to accelerators (e.g. GPUs) (the target constructs)

Los Alamos National Laboratory

4/29/20 | 22

Some useful resources

• Youtube video series “Introduction to OpenMP” by Tim Mattson (Intel)
(slides and exercise sample codes are available)

• Lawrence Livermore National Laboratory’s OpenMP tutorial
https://computing.llnl.gov/tutorials/openMP/

• OpenMP’s official website
https://www.openmp.org/
(the examples in the Specifications are particularly useful)

• “Using OpenMP – Portable Shared Memory Parallel Programming”
by B. Chapman, G. Jost, and R. van der Pas, The MIT Press.

https://www.openmp.org/resources/tutorials-articles/
https://computing.llnl.gov/tutorials/openMP/
https://www.openmp.org/
https://www.openmp.org/specifications/

Los Alamos National Laboratory

4/29/20 | 23

Lecture 2
Profiling OpenMP applications with Vtune

Los Alamos National Laboratory

4/29/20 | 24

Profiling and debugging tools available on IC machines
Tools Module Kodiak Badger/Grizzly Capulin

gprof --- ✓ ✓ ✓
Valgrind valgrind ✓ ✓ ✓
TotalView totalview ✓ ✓ ✓
ARM Forge
(DDT, MAP)

forge ✓ ✓ ✓ ddt / ddt-
memdebug

PAPI papi ✓ ✓ ✓
HPCToolkit hpctoolkit ✓ ✓
Score-P scorep ✓ ✓
Tau tau ✓ ✓
NVIDIA tools
• nvprof
• NSIGHT

cudatoolkit ✓

Intel tools intel-advisor
intel-inspector
intel-trace-analyzer
intel-vtune-amplifier

✓ ✓

Los Alamos National Laboratory

4/29/20 | 25

Profiling and debugging tools available on IC machines
Tools Module Kodiak Badger/Grizzly Capulin

CrayPAT perftools ✓
Stack Trace
Analysis Tool

stat ✓

Cray’s line mode
debugger

gdb4hpc ✓

Cray’s abnormal
termination
processing

atp ✓

Arm Allinea Perf-
Report Tool

arm-perf-reports ✓

Los Alamos National Laboratory

4/29/20 | 27

Loading modules and compiling codes on Badger
• Load a compiler
module load gcc or module load intel

• Load Intel’s Vtune Amplifier module (for generating profiles)
module load intel-vtune-amplifier

• Compile the code with the debugging flag
icpc -qopenmp -g -o 1_hello_world 1_hello_world.cpp

• Set the environment variable to determine the number of threads:
export OMP_NUM_THREADS=36

• Run the executable with Vtune Amplifier:
srun -n 1 amplxe-cl -collect threading -r output ./1_hello_world

• An output directory named output.xxx.xxx/ will be resulted

Los Alamos National Laboratory

4/29/20 | 28

Analyzing VTune’s profiling output files

• If X11 works fine, visualize the results on the compute node:
amplxe-gui output.xxx.xxx/

• If you are comfortable with command line:
amplxe-cl -report summary –r output.xxx.xxx/

• If working remotely, copy the output directory to our computer:
scp -r [usr]@wtrw.lanl.gov:ba-fe:[path_to_output_directory] ./

Then analyze with a local Intel VTune Amplifier client (demo)

• Tips: use amplxe-cl –help to explore different functionalities of Amplifier

Los Alamos National Laboratory

4/29/20 | 29

Analyzing VTune’s profiling output files

Los Alamos National Laboratory

4/29/20 | 30

Detecting data racing problem using Intel’s Inspector
• Compile the code with the debugging flag:
icpc -qopenmp -g -o 2_vector_addition_parallel_buggy.cpp

• Load Intel’s Vtune Amplifier module (for generating profiles)
module load intel-inspector

• Run the executable with Inspector:
export OMP_NUM_THREADS=36
srun -n 1 inspxe-cl -collect=ti3 -r inspector_out ./2_vector_addition_parallel_buggy

Other analysis types you may do (-collect=<flag>):

• An output directory named inspector_out.xxx.xxx/ will be resulted

flag(s) Analysis type

mi1 Detect memory leaks

mi2, mi3 Detect/locate memory problems

ti1 Detect deadlocks

ti2, ti3 Locate deadlocks and data races

Los Alamos National Laboratory

4/29/20 | 31

Detecting data racing problem using Intel’s Inspector
• Viewing the report (command line only):
inspxe-cl -report=summary –r inspector_out.xxx.xxx/
inspxe-cl -report=problems –report-all –r inspector_out.xxx.xxx/

P1: Error: Data race: New
P1.37: Error: Data race: New
/turquoise/users/ywl/openmp_Apr20/2_vector_addition_parallel_buggy.cpp(16):
Error X73: Write: Function main: Module /turquoise/users/ywl/openmp_Apr20/2_vector_addition_parallel_buggy
Code snippet:
14 A[i] = i;
15 B[i] = i*2;
>16 sum += A[i] + B[i];
17 }
18

Stack (1 of 1 instance(s))
>2_vector_addition_parallel_buggy!main - /turquoise/users/ywl/openmp_Apr20/2_vector_addition_parallel_buggy.cpp:16

Data race found!

• Tips: use inspxe-cl –help to explore different functionalities of Inspector

• Exercise: find another problem with the demo code using Inspector ;)

